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Lévy walks and generalized stochastic collision models

E. Barkai and V. N. Fleurov
Beverly and Raymond Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997

~Received 25 March 1997!

A stochastic collision model is studied in which a test particle of a massM collides with bath particles of
another massm. If the distribution of time intervals between the collisions is long tailed, the relaxation of
momentum of the test particle is algebraic. The diffusion is enhanced and a superdiffusion is characteristic of
the test particle motion for long times. It is shown that for long times^x2(t)& is independent of the mass ratio
e5m/M . The mass ratio is an important parameter controlling a transition time before which^x2&;t and after
which diffusion is enhanced. Special attention is given to the Rayleigh limit wheree is small. It is shown that
when e51 our results are identical to those obtained within the framework of the Le´vy walk model.
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I. INTRODUCTION

Anomalous Brownian motion, which is characterized
the mean square displacement of a test particle behavin

^x2~ t !&;td, with dÞ1 ~1!

is a well known phenomenon@1–4#, observed in many
physical systems. The exponentdÞ1 indicates that the con
ditions ensuring the validity of the central limit theore
~CLT! are not satisfied. Le´vy and Khintchine@5# proposed a
generalization of the CLT to the case wherexi in the sum
XN5( i 51

N xi are independent, identically distributed rando
variables with a long tailed distribution, the existence of t
first two moments being not necessarily assumed. Then
random walkXN is called a Le´vy flight. However, thiŝ XN

2 &
diverges for allN.0 and, hence, such a Le´vy flight cannot
represent an anomalous diffusion of the type Eq.~1!.

Shlesingeret al. @6# have introduced a concept of Le´vy
walks when a velocity is attributed to each step and the n
ber of steps in the walk is a random variable, and then
tained a finite mean square displacement. A Le´vy walk de-
scription of chaotic diffusion in Josephson junctions w
considered by Geiselet al. @7#. They have shown that dete
ministic maps can produce Le´vy walks. Similar modified
Lévy flights and walks are often used to model anomalo
diffusion @8,9#.

A description of a classical Brownian motion is provide
by stochastic collision models~see, e.g.,@10#! introduced at
the turn of the last century by Rayleigh@11# and Drude@12#
in order to describe normal (d51) diffusion and transport
Briefly, the Rayleigh model considers a one dimensio
heavy test particle with a massM colliding with light bath
particles with a massm, whereas in the Drude model a pa
ticle is scattered with a rate 1/t̄ independent of the mechan
cal state of the test particle. A common feature of the cl
sical models is that all moments of the probability dens
function ~PDF! of the waiting times between collision even
exist.
561063-651X/97/56~6!/6355~7!/$10.00
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More recently, the Lorentz gas in which a particle is r
flected by equally spaced static spherical obstacles with
nite mass, centered on a hypercubic lattice, was conside
see@13,4#, and references therein. It was found that very lo
trajectories exist along which the particle can move free
The PDF of the path lengthl was estimated, basing upo
simple geometrical reasoning@14,15#, to behave as

p~ l !;
1

l 3 .

Since in this model the particle moves with a constant vel
ity between collisions the PDF of collision timest is

c~ t !;
1

t3 .

Assuming that the process is renewed after each collis
~i.e., neglecting correlations between the successive c
sions! the anomalous behavior

^x2~ t !&;t ln~ t !

was found. This result is compatible with numerical simu
tions.

Now, a century after the works of Rayleigh and Dru
when the anomalous diffusion draws a special interest, a g
eralization of classical collision models may provide a n
venue to attack this problem. Our aim here is to demonst
how this type of approach can produce an anomalous di
sion and to follow the relation between it and the Le´vy-walk
approach. Conditions when the two approaches map
onto another will be emphasized, as well as the situati
when they differ.

For normal diffusion an important control parameter is t
mass ratio

e[
m

M
.
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When eÞ1 the momentum relaxation to the equilibriu
Maxwell distribution is achieved only after the test partic
encountered many collisions with the bath particles. T
means that a correlation exists between the momentum o
test particle just after thenth kick and the momentum afte
the (n1k)th kick. This aspect does not exist in the Le´vy-
walk model. There a particle moves with a velocity whi
changes at random times, the different velocities being
tistically independent.

For the classical models a special interest is the Rayle
limit when e→0 andt̄→0 leaving their ratio finite. In such
a process the collisions are weak though frequent and
process can be described by a Fokker-Planck equation.
limit is well investigated for the normal diffusion, howeve
little is known about such a limit in an anomalous ca
Using a generalized collision model which assumes the
newal property of the process and a power law behavio
the PDF of the waiting times we investigate among ot
things thee dependence of the anomalous diffusion. A sp
cial attention is paid to the Rayleigh limit.

II. THE MODEL

A particle of a massM is considered which moves dy
namically in one dimension according to the Newton law
motion. At random times the velocity of the particle is ra
domly changed due to an elastic collision with bath partic
of a massm. The waiting times between the collisions a
assumed to be independent identically distributed rand
variables and thus the number of collisions in a given time
a renewal process@16#. Each elastic impact causes a chan
of the test particle momentum

p15m1p21~12m1! p̃, ~2!

where

m1[
12e

11e
,

p2 (p1) stands for the momentum value just before~after!
the collision, p̃ is the momentum of the incident bath pa
ticle. The time of interaction between the test and bath p
ticles is assumed to be negligible relative to all other times
the model. The process is characterized by the PDF of
waiting times between collisions,q(t), and by the PDF of
the incident bath particle momenta,f m( p̃).

A common approach is to assume that the renewal p
cess is a Poissonian~as in the Drude model! and that the
momenta of the bath particles are Maxwell distributed a
characterized by a temperatureT ~cf., @17#!. According to the
CLT the diffusion of the test particle is then normal@d51 in
Eq. ~1!#. In the special case whene51, the test particle
momentum is resampled from the Maxwell distribution af
each collision. For this case the model becomes the w
known strong collision model@18# investigated in the con
text of condensed matter physics, plasma physics,
chemical reaction rate theory~for references see, e.g.,@17#!.
Another well known limit of this model is that of wea
~small e! but frequent collisions@17#. Under certain condi-
tions this limit leads to the well known Fokker-Planck
Kramers equations.
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Sometimes the waiting times between the collisions
assumed to be constant and soq(t)5d(t2t0). When
f m( p̃) is Maxwellian ande51 the model is used for numeri
cal simulations of complex systems in thermal equilibriu
@19#. Zanette and Alemany@20# ~see also@21#! chosee51
and the momentum PDF,f m( p̃), with a long tail as sug-
gested by Tsallis@22# in the context of nonextensive statis
tical mechanics. The diffusion is then a Le´vy flight and a
relation between diffusivity and a generalized temperatur
obtained.

The model considered in this paper assumes a Maxw
distribution for the incident particle momenta, remainin
thus, within the framework of intensive statistical mechani
However, the waiting time PDF may be chosen in such
way that its second or even first moment diverges. Then
we will see below, the test particle momentum relaxation
characterized by a power law dependence on time.

Figure 1 shows the momentump of the test particle vs
time for a typical realization of our stochastic process. T
mass ratioe50.1 is chosen to be rather small and so t
momentum relaxes only after many collision events. W
choseq(t) to be a long tailed PDF behaving asymptotica
as

q~t!;t24/3.

This means that all moments ofq(t) diverge. The result of
this choice is that long time intervals exist in which no co
lision event takes place. In these intervals which are of
order of magnitude of the observation time, the moment
of the particle does not change with time and so the part
motion is ballistic. This can be seen in Fig. 2, which prese
the locationx of the particle vs the momentum. The partic
makes long ballistic flights when collisions do not take pla

FIG. 1. The momentum of the test particle vs time~dimension-
less units!. The test particle experienced 200 collisions. The b
particle momentum was drawn from the Maxwell distribution wi
a variance equal to one. Notice the long time intervals in which
collisions take place.
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III. CHARACTERISTIC FUNCTION

Let p(p,tup0,0)dp be the probability that at a timet the
test particle momentum lies in the range (p,p1dp) under
the initial condition thatp5p0 at t50. Then

p~p,tup0,0!dp5(
s50

`

Ps~ t !ps~p,tup0,0!dp,

where Ps(t) is the probability that the test particle expe
enced s collisions within the time interval (0,t), and
ps(p,tup0,0)dp is the probability that the test particle wit
the initial momentump0 arrives at the momentum rang
(p,p1dp) afters collisions. Now the characteristic functio

^exp~ ikp!&5(
s50

`

Ps~ t !^exp~ ikp!&s ~3!

is defined in which the integral

^exp~ ikp!&s5E dp exp~ ikp!ps~p,tup0,0!

can be calculated for the case when the particle moves fr
between collision events.

The momentum of the test particle afters collisions is
found using Eq.~2!,

ps5m1
sp01(

i 51

s

m1
s2 i~12m1! p̃i ,

where p̃i is the momentum of thei th incident bath particle.
The independent variablesp̃i , are distributed according to

f m~ p̃!5
1

A2pkbT
expS 2

p̃2

2mkbTD .

FIG. 2. The phase space for the realization presented in Fig
Long journeys are made during the collisionless time intervals.
ly

Integrating over these variables one arrives at

~4!

The probability Ps(t) is computable once the collisio
number generating function~CNGF!

c~z,t !5(
s50

`

Ps~ t !zs

is known. Inserting Eq.~4! in Eq. ~3! and then differentiating
the characteristic function with respect tok, the equations

^p&5p0c~m1 ,t !

and

^p2&5p0
2c~m1

2 ,t !1MkbT@12c~m1
2 ,t !# ~5!

relating the moments of the test particle momentum to
CNGF are obtained.

In the Appendix it is shown that if

lim
t→`

c~m1
r ,t !50, ~6!

wherer is a positive integer, then

lim
t→`

^eikp&5expS 2
MkbT

2
k2D , ~7!

meaning that the particle reaches its thermal equilibrium.
shall show below that the condition Eq.~6! is satisfied also
for the PDF,q(t), which has no finite moments. Henc
even when no characteristic time scale separating betw
the microscopic dynamics and the coarse grained ma
scopic averaged relaxation exists, the thermal equilibrium
reached.

IV. CNGF

It was shown in Eq.~5! that the CNGF is not only a
mathematical tool it also provides a description of the m
mentum relaxation. In this section we shall investigate t
function.

The Laplace transformĉ(z,u) of the CNGF is calculated
within the framework of the renewal theory@16#. Using the
convolution theorem for the Laplace transform it can
shown that

ĉ~z,u!5
1

u
1

~z21!ĥ~u!

@12zq̂~u!#u
. ~8!

Hereĥ(u) is the Laplace transform of the waiting time PD
h(t), for the first collision.

Now we encounter the problem of the initial condition
In the well known context of continuous time random wal

1.
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two types of such conditions are usually considered@2#. The
first, stationary type of the initial conditions can be defined
the first moment of the waiting time PDF exists, i.e., t
average timet̄[*0

`q(t)tdt between the collisions is finite
Then

hst~t!5
12*0

tq~ t8!dt8

t̄
~9!

corresponds to a process which can be viewed as goin
for a long time before an arbitrarily chosen momentt50,
when the observation starts. As for a nonstationary proce
customary choice is

hnst~t!5q~t! ~10!

~even if t̄ diverges!, where the beginning of the observatio
coincides with the start of the process. Other choices
hnst(t) for Eq. ~10! could be made as well. However, th
choice serves to illustrate the differences between the sta
ary and nonstationary conditions. Inserting Eq.~9! in Eq. ~8!,
the CNGF for a stationary process is

ĉst~z,u!5
1

u
1

~z21!@12q̂~u!#

@12zq̂~u!#u2t̄
~11!

and in the nonstationary case

ĉnst~z,u!5
1

u

12q̂~u!

12zq̂~u!
. ~12!

It is instructive to investigate the classical case of
Poissonian process, i.e.,

q̂~u!5
1

11ut̄
,

meaning that

cst~m1 ,t !5cnst~m1 ,t !5expF2~12m1!
t

t̄ G .
The Rayleigh limit in whiche→0 is reached for a given
observation timet when

lim
e→0,t/ t̄→`

~12m1!t/ t̄5 lim
e→0,t/ t̄→`

2et/ t̄5gt, ~13!

with a finite g. This means that the average number of c
lisions t/ t̄ during the timet is very large and even thoug
each collision is very weak a macroscopic relaxation ti
1/g is well defined since

lim
e→0,t/ t̄→`

c~ t !5exp~2gt !.
f
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We see thatc(t) for finite e andc(t) whene→0 have the
same functional dependence on time.

Below, the functionc(m1 ,t) is investigated for specially
chosen functionsq(t) resulting in anomalous diffusions an
slow relaxations. We shall consider the functions

q̂~u!.H 12~Au!a1c1~Au!2a, 0,a,1
11~Au!ln~Au!, a51
12 t̄u1ca~ t̄u!a1c2~ t̄u!2, 1,a,2
12 t̄u2c1~ t̄u!2 ln~ t̄u!1c2~ t̄u!2, a52

and

q̂~u!.12 t̄u1c1~ t̄u!21ca~ t̄u!a, 2,a,3 ~14!

where ca , c1 , and c2 are dimensionless constants. The
PDFs have the property that fora<1 all moments diverge,
for 1,a<2 only the first momentt̄ converges, while for
2,a,3 the first two moments converge.

First, the two types of initial conditions are consider
and it is shown that they lead to different types of relaxat
even in the long time limit. In the stationary case

cst~m1 ,t !5
ca

G~22a! S t

t̄ D 12a

1
2~a21!ca

G~22a! S 12e

2e D S t

t̄ D 2a

1o~ td!, ~15!

for 1,a,3 with 1/G(0)50 and d5max(2a21,122a).
The leading term is independent ofe and, hence, independen
of the collision strength. For larget it is easy to show that
cst(m1 ,t).jst(t), where

jst~ t !512E
0

t

hst~t!dt

is the probability that the first collision occurs at a tim
larger thant. Thus the slow relaxation given in Eq.~15! is
due to samples where no collisions occur and that is why
relaxation does not depend on the strength of the collisio

The Rayleigh limit Eq.~13! is now considered. Using the
asymptotic expansion~15! we find

lim
e→0,t/ t̄→`

c~m1 ,t !50.

Clearly this Rayleigh limit fails in the sense that it does n
give the correct asymptotic power law behavior found in E
~15!. Thus unlike the Poissonian case this limit cannot
used to approximate a process for which the mass rati
small though finite. One may consider a generalization of
Rayleigh limit where

lim
e→0,t/ t̄→`

2eS t

t̄ D a

[gata

is finite. For this case the leading term in Eq.~15! vanishes
and we find

lim
e→0,t/ t̄→`

cst~m1 ,t !5
2~a21!ca

G~22a!

1

gata .
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However, for any small though finitee this equation does no
provide a really full description of the momentum relaxati
since according to Eq.~15! there exists a time after which

cst;t12a.

The condition that this behavior may be observed@i.e., the
condition that the first term in Eq.~15! is indeed the leading
term# reads for smalle

t

t̄
@

a21

e
.

One sees that fora.1 taking the limite→0 alters the func-
tional dependence of momentum relaxation. Therefore a
cess in whiche is finite cannot be approximated by anoth
limiting process wheree→0.

In the nonstationary case we use Eq.~12! to find

cnst~m1 ,t !5
11e

2e

12a

G~22a! S t

AD 2a

1o~ t22a!

for a<1 and

cnst~m1 ,t !5
ca~a21!

G~22a!

11e

2e S t

t̄ D 2a

1o~ t2a21!

for 1,a,3. The amplitude of the leading term depends
e and the power law differs from that in the stationary ca
The leading term for the nonstationary case has the s
power law dependence as the second term in Eq.~15!. The
difference between the two ensembles has to do with the
that for the stationary case, the first waiting time^thst(t)& is
in the statistical sense much longer than the first waiting t
in the nonstationary case. In fact, it is infinite for 1,a<2,
so the test particle waits on the average an infinite time u
it experiences the first collision.

For the casea<1, t̄ does not exist and clearly one cann
consider the Rayleigh limit~13!. However, one may conside
a generalization

lim
e→0,~ t/A!a→`

2eS t

AD a

5bata. ~16!

Then

lim
e→0,~ t/A!a→`

cnst~m1 ,t !5
~12a!

G~22a!

1

bata ,

showing that this limiting procedure does not alter the ti
dependence of the CNGF found for the finitee case. Thus we
see that if all moments of a PDF,q(t), exist the Rayleigh
limit ~13! works well. When the first moment of the PD
exists but higher moments diverge, the limite→0 fails,
while when all moments of the PDF diverge the generaliz
Rayleigh limit ~16! can be used.
o-

n
.
e

ct

e

til

e
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V. MEAN SQUARE DISPLACEMENT

Now the mean square displacement^x̂2(t)& is calculated
by means of the relation

^x̂2~u!&5
2Ĉ~u!

M2u2

for its Laplace transform, in whichĈ(u) is the Laplace
transform of the correlation function

C~ t ![^p~0!p~ t !&5kbTMcst~m1 ,t !, ~17!

calculated under the stationary initial conditions. Then o
obtains for large times

^x2~ t !&5
2kbT

M H cat̄ 2

G~42a! S t

t̄ D 32a

1S c21
12e

2e D t̄tJ
1o~ t22a! for 1,a,2,

^x2~ t !&5
2kbT

M H c1t̄t lnS t

t̄ D1S c21
12e

2e D t̄tJ
1o@ ln~ t !# for a52, ~18!

^x2~ t !&5
2kbT

M S c11
12e

2e D t̄t1o~ t32a! for 2,a,3.

Time exponents of the leading terms are the same as t
found within the framework of Le´vy-walk models@24#. For
a<2 the diffusion is enhanced and according to our res
Eq. ~15! and discussion it is not surprising that the first lea
ing term in Eq.~18! is independent ofe. The linear correc-
tion term becomes increasingly important ase becomes
smaller. The superdiffusive term exceeds the linear one o
when the timet becomes large enough,

t

t̄
@F 1

2e

G~42a!

ca
G1/~22a!

, 1,a,2. ~19!

This time can become especially long ifa approaches 2 from
below. Thus, althoughe does not control the enhanced di
fusion it is an important parameter controlling the transiti
from the normal to superdiffusive behavior.

For a Poisson waiting time distribution the process can
described by a master equation and a Fokker-Planck e
tion holds in the Rayleigh limit~13!. The mean square dis
placements in both descriptions increase linearly with ti
for long times. This limit in Eq.~18! results also in a linear
time dependencêx2(t)&52Dt with

D5
kbT

Mg

and g defined in Eq.~13!. Actually the convergence is no
uniform, meaning that for any small but finitee there is a
large enough timet after which the superdiffusive term be
comes larger than the linear one. Therefore both terms
necessary for a proper description of^x2(t)& for 1,a<2
close to the Rayleigh limit.
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For completeness, we specify^x2(t)&nst for the nonsta-
tionary case using in calculations the method given in@23#.
Then for different values of the parametera one obtains the
equations

^x2~ t !&nst.
kbT

M
~12a!t2 for 0,a,1, ~20!

^x2~ t !&nst.
kbT

M

t2

lnS t

AD for a51,

^x2~ t !&nst.
2kbT

M

cat̄ 2~a21!

G~42a! S t

t̄ D 32a

for 1,a,2

for the leading terms, all these being independent ofe. For
0,a,1 the motion is ballistic. When 2<a,3, ^x2(t)&nst
coincides with the leading term in Eq.~18!.

VI. COMPARISON WITH THE LE ´ VY-WALK MODEL

Now our results are compared with the results obtain
within the framework of the Le´vy walk @7,24,25# which con-
siders a velocity model, in which the test particle moves a
constant velocity for a given time, until it changes directi
~without changing the magnitude!. The velocity model de-
scribes well the dynamical properties generated by itera
deterministic chaotic maps. The velocity model is similar
a strong collision limit. Indeed, assumingkbT/M51 and
c51, Eqs.~11! and ~17! of our model produce

^x̂2~u!&52F 1

u3 2
12q̂~u!

u4t̄ G ,
which coincides with Eq.~29! in @25#. The two models have
the same asymptotic behaviors of^x2(t)& which in our
model is independent ofe for large times. The sources o
fluctuations are long time intervals when no collisions oc
and these in turn are independent of the strength of c
sions.
d

a

g

r
i-

VII. SUMMARY

This work generalizes the classical models of Rayle
and Drude and incorporates waiting time PDF with diverg
moments. It results in anomalous superdiffusive behavio
the test particle. We have found that for long times the d
fusion is independent of the mass ratioe. This differs
strongly from the classical models where the diffusion co
stantD exists and ise dependent. The corrections to the lon
time Lévy-walk-type behavior of̂ x2(t)& were found. We
show that whene becomes smaller these corrections beco
of greater importance for longer times.

A special attention was given to the Rayleigh limit. It wa
shown that in this limit the time dependence of the relaxat
and the diffusion may differ from the exact behavior va
for finite e. A generalization~16! of the Rayleigh limit seems
to work well for the case when the PDFq(t) has no finite
moments.
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APPENDIX

To prove Eq.~7! we shall consider first thenth moment of
the mechanical momentum̂pn&. We find it convenient to
define, using Eq.~4!,

^eikps&5expS 2
MkbT

2
k2Dem1

~k!, ~A1!

with

em1
~k![expS im1

skp01
MkbT

2
m1

2sk2D .

Then inserting Eq.~A1! in Eq. ~3! and differentiatingn times
we find
^pn&5
dn

dkn ^eikp&uk50

5H F dn

dkn expS 2
MkbT

2
k2D G(

s50

`

Ps~ t !em1
~k!1•••1S n

r D
3F dn2r

dkn2r expS 2
MkbT

2
k2D GF (

s50

`

Ps~ t !
dr

dkr em1
~k!G1•••expS 2

MkbT

2
k2D F (

s50

`

Ps~ t !
dn

dkn em1
~k!G J U

k50

. ~A2!

The first term on the right hand side of this equation is considered. Since by definitionem1
(0)51 and using the normalization

condition(s50
` Ps(t)51, we find

F dn

dkn expS 2
MkbT

2
k2D GU

k50
(
s50

`

Ps~ t !em1
~0!5

dn

dkn expS 2
MkbT

2
k2D U

k50

. ~A3!
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It is clear that this term gives the thermal equilibrium resu
We now consider the other terms in Eq.~A2! satisfying the
condition 1<r<n. Using the change of variablesm1

sk5a
we find

(
s50

`

Ps~ t !
dr

dkr em1
~k!uk50

5F dr

da r expS iap02
MkbT

2
a2D GU

a50

c~m1
r ,t !.
nd
.Inserting this equation in the finite sum Eq.~A2! we see that
condition Eq.~6! nullifies all terms in Eq.~A2! except for the
first term, Eq.~A3!. We find

lim
t→`

^pn&5
dn

dkn expS 2
MkbT

2 D U
k50

,

meaning that the characteristic function is indeed the Ga
ian Eq.~7!.
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