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Levy walks and generalized stochastic collision models
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A stochastic collision model is studied in which a test particle of a nhvsllides with bath particles of
another massn. If the distribution of time intervals between the collisions is long tailed, the relaxation of
momentum of the test particle is algebraic. The diffusion is enhanced and a superdiffusion is characteristic of
the test particle motion for long times. It is shown that for long tife&t)) is independent of the mass ratio
e=m/M. The mass ratio is an important parameter controlling a transition time before (ficht and after
which diffusion is enhanced. Special attention is given to the Rayleigh limit whiaremall. It is shown that
when e=1 our results are identical to those obtained within the framework of they lvealk model.
[S1063-651X97)07511-9

PACS numbdss): 05.40+j, 02.50—r, 05.60+w

[. INTRODUCTION More recently, the Lorentz gas in which a particle is re-
flected by equally spaced static spherical obstacles with infi-
Anomalous Brownian motion, which is characterized bynite mass, centered on a hypercubic lattice, was considered,
the mean square displacement of a test particle behaving a€[13,4], and references therein. It was found that very long
trajectories exist along which the particle can move freely.
2000\ 18 : The PDF of the path length was estimated, basing upon
OAU) =17 with 571 @ simple geometrical reasonirjg4,15, to behave as

is a well known phenomenofl-4], observed in many 1

physical systems. The exponefi 1 indicates that the con- p(l)~ 3

ditions ensuring the va}Iidity of the central limit theorem

(CLT) are nOt safisfied. by and Khintching5] proposed @ Since in this model the particle moves with a constant veloc-
generalization of the CLT to the case wheqein the sum . panveen collisions the PDF of collision timess
Xn=2N ,x; are independent, identically distributed random
variables with a long tailed distribution, the existence of the
first two moments being not necessarily assumed. Then the P(t)~ .
random walkXy, is called a Ley flight. However, this(X3) t

diverges for allN=>0 and, hence, such a v flight cannot Assuming that the process is renewed after each collision

represent an anomalous diffusion of the type &9. . ; ; . .
Shiesingeret al. [6] have introduced a concept of e (|_.e., neglecting correlauon; between the successive colli-
siong the anomalous behavior

walks when a velocity is attributed to each step and the num?=
ber of steps in the walk is a random variable, and then ob- 5

tained a finite mean square displacement. AyLalk de- (x4(0))~tIn(t)

scription of chaotic diffusion in Josephson junctions was ) ] ] ) ) )
considered by Geiset al. [7]. They have shown that deter- Was found. This result is compatible with numerical simula-
ministic maps can produce g walks. Similar modified tONS.

Lévy flights and walks are often used to model anomalous NOW. & century after the works of Rayleigh and Drude
diffusion [8,9]. when the anomalous diffusion draws a special interest, a gen-

A description of a classical Brownian motion is provided eralization of clas_sical collision models may provide a new
by stochastic collision modelsee, e.g.[10]) introduced at Venue to attack this problem. Our aim here is to demonstlrate
the turn of the last century by Rayleigihl] and Drudeg12] how this type of approach can produce an anomalous diffu-
in order to describe normals=1) diffusion and transport. Sion and to follow the relation between it and thesevalk

Briefly, the Rayleigh model considers a one dimensionaPPProach. Conditions when the two approaches map one
heavy test particle with a masd colliding with light bath ~ ©NtO another will be emphasized, as well as the situations

particles with a mase, whereas in the Drude model a par- When they differ. , ,

ticle is scattered with a rate independent of the mechani-  For normal diffusion an important control parameter is the
cal state of the test particle. A common feature of the clasMass ratio
sical models is that all moments of the probability density
function (PDF of the waiting times between collision events

exist.

i
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When €#1 the momentum relaxation to the equilibrium 10 T T L
Maxwell distribution is achieved only after the test particle i A
encountered many collisions with the bath particles. This
means that a correlation exists between the momentum of the
test particle just after thath kick and the momentum after
the (n+Kk)th kick. This aspect does not exist in théwe
walk model. There a particle moves with a velocity which
changes at random times, the different velocities being sta-
tistically independent. 2 ,
For the classical models a special interest is the Rayleigh o
limit when e—0 andr—0 leaving their ratio finite. In such
a process the collisions are weak though frequent and the
process can be described by a Fokker-Planck equation. This [
limit is well investigated for the normal diffusion, however, 5
little is known about such a limit in an anomalous case.
Using a generalized collision model which assumes the re-
newal property of the process and a power law behavior of
the PDF of the waiting times we investigate among other
things thee dependence of the anomalous diffusion. A spe-
cial attention is paid to the Rayleigh limit.
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FIG. 1. The momentum of the test particle vs tifdémension-
Il. THE MODEL less unity. The test particle experienced 200 collisions. The bath

. . . . particle momentum was drawn from the Maxwell distribution with
A particle of a masM is considered which moves dy- 3 yariance equal to one. Notice the long time intervals in which no
namically in one dimension according to the Newton law of¢qjjisions take place.

motion. At random times the velocity of the particle is ran-
domly changed due to an elastic collision with bath particles
of a massm. The waiting times between the collisions are ..\ ~.o1"t5 pbe constant and §67) = (7— 75). When
assumed to be independent identically distributed rando (P) is Maxwellian ande= 1 the model is used for numeri-
variables and thus the number of collisions in a given time is.™" P

o cal simulations of complex systems in thermal equilibrium
a renewal procedd 6]. Each elastic impact causes a change[lg] Zanette and Aleman20] (see alsq21]) chosee=1
of the test particle momentum '

and the momentum PDH,,(p), with a long tail as sug-

Sometimes the waiting times between the collisions are

pt=pp +(1—u)P, 2) gested by Tsalli$22] in the context of nonextensive statis-
tical mechanics. The diffusion is then aweflight and a
where relation between diffusivity and a generalized temperature is
obtained.
_1-e€ The model considered in this paper assumes a Maxwell
M=17 e distribution for the incident particle momenta, remaining

thus, within the framework of intensive statistical mechanics.

p~ (p™) stands for the momentum value just beféadten However, the waiting time PDF may be chosen in such a
the collision,p is the momentum of the incident bath par- way that its second or even first moment diverges. Then, as
ticle. The time of interaction between the test and bath parwe will see below, the test particle momentum relaxation is
ticles is assumed to be negligible relative to all other times ircharacterized by a power law dependence on time.
the model. The process is characterized by the PDF of the Figure 1 shows the momentum of the test particle vs
waiting times between collisiong|(7), and by the PDF of time for a typical realization of our stochastic process. The
the incident bath particle moments,(p). mass ratioe=0.1 is chosen to be rather small and so the

A common approach is to assume that the renewal promomentum relaxes only after many collision events. We
cess is a Poissoniafas in the Drude modgland that the choseq(7) to be a long tailed PDF behaving asymptotically
momenta of the bath particles are Maxwell distributed andas
characterized by a temperatulrdcf., [17]). According to the
CLT the diffusion of the test patrticle is then nornjak=1 in
Eqg. (1)]. In the special case whea=1, the test particle
momentum is resampled from the Maxwell distribution after
each collision. For this case the model becomes the wellThis means that all moments qf ) diverge. The result of
known strong collision modd]18] investigated in the con- this choice is that long time intervals exist in which no col-
text of condensed matter physics, plasma physics, anlision event takes place. In these intervals which are of the
chemical reaction rate theoffor references see, e.¢17]). order of magnitude of the observation time, the momentum
Another well known limit of this model is that of weak of the particle does not change with time and so the particle
(small ) but frequent collisiong17]. Under certain condi- motion is ballistic. This can be seen in Fig. 2, which presents
tions this limit leads to the well known Fokker-Planck or the locationx of the particle vs the momentum. The particle
Kramers equations. makes long ballistic flights when collisions do not take place.

a(n)~7 %
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105 ; ¥ T Integrating over these variables one arrives at

j | (exptikp)),= [ -+ [ T dbsfu(rexplit,)

N —
S5x104 ] s
I | . Mk,T
i ] =eXP{lk/L‘1po— 5—K(1=ui).
oL ] (@

The probability P(t) is computable once the collision
number generating functioffCNGF

5104 l t//(Z,t):SZ:O Ps(t)z°

| is known. Inserting Eq(4) in Eq. (3) and then differentiating
‘ P Ll C ‘ the characteristic function with respectko the equations
5 0 5 10
P (P)=Poth(p1,t)

—1%10°®
-10

FIG. 2. The phase space for the realization presented in Fig. 1and

Long journeys are made during the collisionless time intervals. ) 2 2 2
(P9)=potr(p1,t) + MKy T[1— (1, t)] 5

relating the moments of the test particle momentum to the

I1l. CHARACTERISTIC FUNCTION .
CNGF are obtained.

Let 7(p,t|po,0)dp be the probability that at a timiethe In the Appendix it is shown that if
test particle momentum lies in the range,f+dp) under . ;
the initial condition thatp=p, att=0. Then lim ¢(py,0)=0, (6)

[

oo

w(p,tIpo,O)dp=§,0 P(t)e(p,t|po,0)dp, wherer is a positive integer, then

i . Mk, T
ikpy — _ 2
where Py(t) is the probability that the test particle experi- tlm(e ) exy{ 2 k ) ™
enced s collisions within the time interval (@), and

74(p,t|po,0)dp is the probability that the test particle with meaning that the particle reaches its thermal equilibrium. We
the initial momentump, arrives at the momentum range shall show below that the condition E(f) is satisfied also

(p,p+dp) afters collisions. Now the characteristic function for the PDF,q(7), which has no finite moments. Hence,
even when no characteristic time scale separating between

. ~ _ the microscopic dynamics and the coarse grained macro-
(exp(lkp)>=520 Ps(t)(exp(ikp))s (3)  scopic averaged relaxation exists, the thermal equilibrium is
B reached.

is defined in which the integral
IV. CNGF
(exp(ikp))szJ' dp exp(ikp) ms(p,t|Po,0) It was shown in Eq.5) that the CNGF is not only a

mathematical tool it also provides a description of the mo-
can be calculated for the case when the particle moves freelpentum relaxation. In this section we shall investigate this

between collision events. function. R
The momentum of the test particle aftercollisions is The Laplace transforny(z,u) of the CNGF is calculated

found using Eq(2), within the framework of the renewal theof¢6]. Using the

. convolution theorem for the Laplace transform it can be

R i - shown that
Ps= 3P0t X, 15 (1—n)Pi, A
=1 . 1 (z-1)h(u)
_ . i L . I/I(Z,U):—'Ff. (8)

wherep; is the momentum of théth incident bath particle. u [1-zg(u)]u

The ind dent variablgs, distributed ding t ~ e
© ihdependent variablgr , are distributed according to Hereh(u) is the Laplace transform of the waiting time PDF,

1 ~5 h(7), for the first collision.
fo(P)= —exr{ _ p_) Now we encounter the problem of the initial conditions.
V27K, T 2mieT In the well known context of continuous time random walks
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two types of such conditions are usually considdi@&dThe  We see thaiy(t) for finite € and ¢(t) whene—0 have the
first, stationary type of the initial conditions can be defined ifsame functional dependence on time.

the first moment of the waiting time PDF exists, i.e., the Below, the function (4 ,t) is investigated for specially
average timer= [;q(7) 7d7 between the collisions is finite. chosen functions|() resulting in anomalous diffusions and
Then slow relaxations. We shall consider the functions

1-(Au)*+c (Au)?e, 0<a<i
1+(Au)in(Au), a=1

1—rutc, (ru)*+cy(7u)?, 1<a<?2
1—ru—cy(ru)? In(ru)+cy(7u)?, a=2

1-foq(t")dt’

T

he(7)= 9 q(u)=

corresponds to a process which can be viewed as going on

for a long time before an arbitrarily chosen momeént0, and

when the observation starts. As for a nonstationary process a . _ _ _

customary choice is A(u)=1-71Uu+C(TU)?+c, (Tu)%, 2<a<3 (14

wherec,, c;, andc, are dimensionless constants. These
hps{ 7)=0q(7) (10 PDFs have the property that far<1 all moments diverge,
for 1<a<2 only the first moment converges, while for
(even if 7 diverges, where the beginning of the observation 2<a<3 the first two moments converge.
coincides with the start of the process. Other choices of First, the two types of initial conditions are considered
h.s{7) for Eq. (10) could be made as well. However, this and it is shown that they lead to different types of relaxation
choice serves to illustrate the differences between the statiomven in the long time limit. In the stationary case
ary and nonstationary conditions. Inserting E).in Eqg. (8),

l1-«a
the CNGF for a stationary process is __ Ca 1
~ 1 (z=D[1-g(w] 2(a—1)c, (1€ (t @
=t — 3
V(2 W= 0t T atr (11 T Te—a | 2¢ /\77 To). (19
and in the nonstationary case for 1<a<3 with 1I'(0)=0 and é=max(—a—1,1-2a).

The leading term is independenteénd, hence, independent
of the collision strength. For largeit is easy to show that

- _11-aw Y1, 1) =Ex(1), where
Pns(Z,U)= 5 T—zqu) (12 |
It is instructive to investigate the classical case of the gs‘(t)zl_Jth‘( mdr

Poissonian process, i.e.,
is the probability that the first collision occurs at a time
larger thant. Thus the slow relaxation given in E(L5) is

q(u)= 1 _ due to samples where no collisions occur and that is why the
l+ur relaxation does not depend on the strength of the collisions.
The Rayleigh limit Eq(13) is now considered. Using the
meaning that asymptotic expansiofil5) we find

e— 0t/ 7
sy, t)= ‘pnst(ﬂlut):exf{_(l_l-’vl) 7}
Clearly this Rayleigh limit fails in the sense that it does not
give the correct asymptotic power law behavior found in Eq.
(15). Thus unlike the Poissonian case this limit cannot be

used to approximate a process for which the mass ratio is
small though finite. One may consider a generalization of the
with a finite y. This means that the average number of col-

lim (1—u)t/7= lim 2et/r=vt, (13)  Rayleigh limit where
t o
%/ =7at"
lisions t/~ during the timet is very large and even though

eHO,t/T_HOO EHO,t/T_HOO
each collision is very weak a macroscopic relaxation times finite. For this case the leading term in E#5) vanishes
1/y is well defined since and we find

The Rayleigh limit in whiche—0 is reached for a given
observation time& when

lim 2€

e—0t/7—

| _ 2(a—1)c, 1
lim  yg(t)=exp — yt). lim ‘;bst(/ubt):_]‘*(z_a) Yo

e—0t/ T— e—0t/T—»
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However, for any small though finitethis equation does not V. MEAN SQUARE DISPLACEMENT

provide a really full description of the momentum relaxation

since according to Eq15) there exists a time after which Now the mean square displacemé¢ri(t)) is calculated

by means of the relation

Yo th . 2C(u)
t <X2(U)>: Mz(:jz

The condition that this behavior may be obseryed., the
condition that the first term in Eq15) is indeed the leading

term] reads for smalk for its Laplace transform, in Whichf:(u) is the Laplace

transform of the correlation function

a—1 C()=(P(0)p(t)) =Ky TMfrs( 11,1, 17
- :

t
T €

calculated under the stationary initial conditions. Then one

. - obtains for large times
One sees that fax>1 taking the limite— 0 alters the func- g

tional dependence of momentum relaxation. Therefore a pro- 2k,T [ c 72 [t)|3@
cess in whiche is finite cannot be approximated by another  (x%(t))=—— {“— (;), +
limiting process where— 0. M (T(4=a) \7

In the nonstationary case we use Etp) to find +o(t2 @) for 1<a<2,

+ 1-e Tt
CZ 26 T

1+e 1-a [t|° » 2ka[ — ﬂ[ 1—5)_}
=5 | % 2a X“(t))=——{cy7t In|=f+| c+ 7t
sl 11,t) 2¢ T(2—a) (A +o(t™“%) ( ) M 1 pm 2t 5,
for a<1 and +o[In(t)] for a=2, (18)
2 Zka — €\ __ 3
c (a—1) 1+e[t) @ . ()= —4 | Cat | tHo(t®™)  for 2<a<s.
‘ﬂnsl(#lyt):m? ?} +o(t )

Time exponents of the leading terms are the same as those
for 1<a<3. The amplitude of the leading term depends onfound within the framework of Ley-walk models[24]. For
e and the power law differs from that in the stationary casea<2 the diffusion is enhanced and according to our result
The leading term for the nonstationary case has the sarfeq. (15 and discussion it is not surprising that the first lead-
power law dependence as the second term in(E5). The ing term in Eq.(18) is independent ok. The linear correc-
difference between the two ensembles has to do with the fa¢ton term becomes increasingly important asbecomes
that for the stationary case, the first waiting tifndr(7)) is ~ smaller. The superdiffusive term exceeds the linear one only
in the statistical sense much longer than the first waiting timavhen the timet becomes large enough,
in the nonstationary case. In fact, it is infinite foklv<2,
so the test particle waits on the average an infinite time until
it experiences the first collision.
For the caser<1, 7 does not exist and clearly one cannot
consider the Rayleigh limitl3). However, one may consider This time can become especially longiifapproaches 2 from
a generalization below. Thus, althougle does not control the enhanced dif-
fusion it is an important parameter controlling the transition
e from the normal to superdiffusive behavior.
lim 26<_) =Bt (16) For a Poisson waiting time distribution the process can be
A described by a master equation and a Fokker-Planck equa-
tion holds in the Rayleigh limi13). The mean square dis-
Then placements in both descriptions increase linearly with time
for long times. This limit in Eq(18) results also in a linear
time dependencéx?(t))= 2Dt with

12— a)

! M , l<a<2. (29

2¢ c,

t
=
=

e—0,(t/A)Y—o

) (1-a) 1
lim lﬁnsﬁﬂl,t):mﬁ- KT
e 0(t/A)* o0 @ D= b
My

showing that this limiting procedure does not alter the time

dependence of the CNGF found for the finitease. Thus we and vy defined in Eq.(13). Actually the convergence is not
see that if all moments of a PD(7), exist the Rayleigh uniform, meaning that for any small but finitethere is a
limit (13) works well. When the first moment of the PDF large enough time after which the superdiffusive term be-
exists but higher moments diverge, the lindit-0 fails, comes larger than the linear one. Therefore both terms are
while when all moments of the PDF diverge the generalizechecessary for a proper description @f(t)) for 1<a<2
Rayleigh limit (16) can be used. close to the Rayleigh limit.
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For completeness, we specitx?(t)), for the nonsta- VIl. SUMMARY
tionary case using in calculations the method given28.
Then for different values of the parameteione obtains the
equations

This work generalizes the classical models of Rayleigh
and Drude and incorporates waiting time PDF with divergent
moments. It results in anomalous superdiffusive behavior of

kyT the test particle. We have found that for long times the dif-
(X2(1)) ns= ~ (1= a)t? for 0<a<1, (200  fusion is independent of the mass ratio This differs
strongly from the classical models where the diffusion con-

KT 2 stantD exists and i dependent. The corrections to the long
(xz(t)>nstzl— for a=1, time Levy-walk-type behavior of(x?(t)) were found. We
M In(i) show that where becomes smaller these corrections become
A of greater importance for longer times.

A special attention was given to the Rayleigh limit. It was
) 2k T ¢ 7% (a—1) (t)%7¢ shown that in this limit the time dependence of the relaxation
(X)) nse= M T(4—a) \7 for 1<a<2 and the diffusion may differ from the exact behavior valid
for finite . A generalizatior(16) of the Rayleigh limit seems
for the leading terms, all these being independené.dfor  to work well for the case when the PDi 7) has no finite
0<a<1 the motion is ballistic. When <3, (x*(t))nst moments.
coincides with the leading term in E¢L8).
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within the framework of the Dey walk [7,24,29 which con-
siders a velocity model, in which the test particle moves at a
constant velocity for a given time, until it changes direction

(without changing the magnitufleThe velocity model de- To prove Eq(7) we shall consider first theth moment of

scribes well the dynamical properties generated by iteratinghe mechanical momentugp”). We find it convenient to
deterministic chaotic maps. The velocity model is similar togefine, using Eq(4),

a strong collision limit. Indeed, assuming,T/M=1 and

APPENDIX

c=1, Egs.(11) and(17) of our model produce _ Mk, T
) (enkm}:exp{ - —k2>e#1(k), (A1)
SOOI S G () 2
XN=2| 53—~ |

with

which coincides with Eq(29) in [25]. The two models have MKk.T

the same asymptotic behaviors (%3(t)) which in our e (k Eexp(i SKDat —2 2sk2)

model is independent of for large times. The sources of “1( ) #1¥Po 2 M '
fluctuations are long time intervals when no collisions occur

and these in turn are independent of the strength of colliThen inserting EqAl) in Eq. (3) and differentiatingy times
sions. we find

n\ _— d" ikp
<p> dkn<e >|k=0

dn Mk, T

NEWEEST- B

dn MkoT V]| < d’ M
Wex - 2 k 520 PS(t)We/“l(k) +-rexp —

The first term on the right hand side of this equation is considered. Since by defhs)jtlim): 1 and using the normalization
condition=;_,P4(t)=1, we find

dn MkpT
{Wp( 2 k”

kT L\ | < dn
5>k )LZO PS(t) g€y (K)

X (A2)

k=0

(A3)

- 5 01— dn |\/|kak2
e s(the,,( )_Wex B

k=0
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It is clear that this term gives the thermal equilibrium result.Inserting this equation in the finite sum E&2) we see that

We now consider the other terms in Eé2) satisfying the
condition I=r<n. Using the change of variablgs;k= «
we find

r

. d
2 Po(0) g€, (Wli=o

da [ MkoT
= WEX lapPo— > o

Py ,t).

a=0

condition Eq.(6) nullifies all terms in Eq(A2) except for the
first term, Eq.(A3). We find

) . d" Mk, T
im{p )=Wex -
oc k=0

I
t—

meaning that the characteristic function is indeed the Gauss-
ian Eq.(7).
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